Waldenström's macroglobulinemia

Waldenström's macroglobulinemia
Classification and external resources
ICD-10 C88.0
ICD-9 273.3
ICD-O: M9761/3
OMIM 153600
DiseasesDB 14030
MedlinePlus 000588
eMedicine med/2395
MeSH D008258

Waldenström's macroglobulinemia (WM, also known as lymphoplasmacytic lymphoma) is cancer involving a subtype of white blood cells called lymphocytes. The main attributing antibody is Immunoglobulin M (IgM). WM is an "indolent lymphoma," (i.e., one that tends to grow and spread slowly). It is a type of lymphoproliferative disease, which shares clinical characteristics with the indolent non-Hodgkin lymphomas.[1]

The disease, named after the Swedish oncologist Jan G. Waldenström, was first identified in 1944. As with other lymphomas, the disease is characterized by an uncontrolled increase of B-cells, i.e., white blood cells formed in the bone marrow and lymph nodes. The proliferation of B-cells interferes with the production of red blood cells, resulting in anemia. A unique characteristic of the disease is that the B-cells produce excess amounts of immunoglobulin protein (IgM), thickening the blood, and requiring additional treatment. WM is a rare disease, with only about 1,500 cases per year in the U.S. While the disease is incurable, it is treatable. Because of its indolent nature, many patients are able to lead active lives, and, when treatment is required, may experience years of symptom-free remission.[2]

Contents

History and classification

WM was first described by Jan G. Waldenström (1906–1996) in 1944 in two patients with bleeding from the nose and mouth, anemia, decreased levels of fibrinogen in the blood (hypofibrinogenemia), swollen lymph nodes, neoplastic plasma cells in bone marrow, and increased viscosity of the blood due to increased levels of a class of heavy proteins called macroglobulins.[3]

For a time, WM was considered to be related to multiple myeloma due to the presence of monoclonal gammopathy and infiltration of the bone marrow and other organs by plasmacytoid lymphocytes. The new World Health Organization (WHO) classification, however, places WM under the category of lymphoplasmacytic lymphomas, itself a subcategory of the indolent (low-grade) non-Hodgkin lymphomas.[4] In recent years, there have been significant advances in the biology and treatment of WM.[5]

Causes

Waldenström's macroglobulinemia is characterized by an uncontrolled clonal proliferation of terminally differentiated B lymphocytes. The underlying etiology is not yet known but a number of risk factors have been identified. There has been an association demonstrated with the locus 6p21.3 on chromosome 6.[6] There is a 2- to 3-fold risk increase of developing WM in people with a personal history of autoimmune diseases with autoantibodies and particularly elevated risks associated with hepatitis, human immunodeficiency virus, and rickettsiosis.[7]

There are genetic factors, with first-degree relatives shown to have a highly increased risk of also contracting Waldenström's.[8] There is also evidence to suggest that environmental factors including exposure to farming, pesticides, wood dust, and organic solvents may influence the development of Waldenström's.[9]

Biochemistry

Although believed to be a sporadic disease, studies have shown increased susceptibility within families, indicating a genetic component.[10][11] However, genetic involvement is poorly understood. WM cells show only minimal changes in cytogenetic and gene expression studies. Their miRNA signature however differs from their normal counterpart. It is therefore believed that epigenetic modifications play a crucial role in the disease.[12]

Comparative genomic hybridization identified the following chromosomal abnormalities: deletions of 6q23 and 13q14, and gains of 3q13-q28, 6p and 18q.[13] FGFR3 is overexpressed.[14] The following signalling pathways have been implicated:

The protein Src tyrosine kinase is overexpressed in Waldenström macroglobulinemia cells compared with control B cells.[24] Inhibition of Src arrests the cell cycle at phase G1 and has little effect on the survival of WM or normal cells.

MicroRNAs involved in Waldenström's[25][26]:

MicroRNA-155 regulates the proliferation and growth of WM cells in vitro and in vivo, by inhibiting MAPK/ERK, PI3/AKT, and NF-κB pathways.

In WM-cells, histone deacetylases and histone-modifying genes are de-regulated.[34]

Bone marrow tumour cells express the following antigen targets CD20 (98.3%), CD22 (88.3%), CD40 (83.3%), CD52 (77.4%), IgM (83.3%), MUC1 core protein (57.8%), and 1D10 (50%).[35]

Epidemiology

Of all cancers involving the same class of blood cell, 1% of cases are WM.[36]

WM is a rare disorder, with fewer than 1,500 cases occurring in the United States annually.[1] The median age of onset of WM is between 60 and 65 years, with some cases occurring in late teens.[1][37]

Symptoms

Symptoms of WM include weakness, fatigue, weight loss and chronic oozing of blood from the nose and gums.[38] Peripheral neuropathy can occur in 10% of patients. Lymphadenopathy, splenomegaly, and/or hepatomegaly are present in 30-40% of cases.[37] Other possible symptoms include blurring or loss of vision, headache, and (rarely) stroke or coma.

Pathophysiology

Symptoms blurring or loss of vision, headache, and (rarely) stroke or coma are due to the effects of the IgM paraprotein, which may cause autoimmune phenomenon or cryoglobulinemia. Other symptoms of WM are due to the hyperviscosity syndrome, which is present in 6-20% of patients.[39][40][41][42] This is attributed to the IgM monoclonal protein increasing the viscosity of the blood by forming aggregates to each other, binding water through their carbohydrate component and by their interaction with blood cells.[43]

Diagnosis

A diagnosis of Waldenström's macroglobulinemia depends on a significant monoclonal IgM spike evident in blood tests and malignant cells consistent with the disease in bone marrow biopsy samples.[44] Blood tests show the level of IgM in the blood and the presence of proteins, or tumor markers, that are the key symptoms of WM. A bone marrow biopsy provides a sample of bone marrow, usually from the back of the pelvis bone. The sample is extracted through a needle and examined under a microscope. A pathologist identifies the particular lymphocytes that indicate WM. Flow cytometry may be used to examine markers on the cell surface or inside the lymphocytes.[45]

Additional tests such as computed tomography (CT or CAT) scan may be used to evaluate the chest, abdomen, and pelvis, particularly swelling of the lymph nodes, liver, and spleen. A skeletal survey can help distinguish between WM and multiple myeloma.[45] Anemia is typically found in 80% of patients with WM. Leukopenia, and thrombocytopenia may be observed. Neutropenia may also be found in some patients.[44]

Chemistry tests include lactate dehydrogenase (LDH) levels, uric acid levels, erythrocyte sedimentation rate (ESR), renal and hepatic function, total protein levels, and an albumin-to-globulin ratio. The ESR and uric acid level may be elevated. Creatinine is occasionally elevated and electrolytes are occasionally abnormal. Hypercalcemia is noted in approximately 4% of patients. The LDH level is frequently elevated, indicating the extent of Waldenström macroglobulinemia–related tissue involvement. Rheumatoid factor, cryoglobulins, direct antiglobulin test and cold agglutinin titre results can be positive. Beta-2-microglobulin and C-reactive protein test results are not specific for Waldenström macroglobulinemia. Beta-2-microglobulin is elevated in proportion to tumor mass. Coagulation abnormalities may be present. Prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen tests should be performed. Platelet aggregation studies are optional. Serum protein electrophoresis results indicate evidence of a monoclonal spike but cannot establish the spike as IgM. An M component with beta-to-gamma mobility is highly suggestive of Waldenström macroglobulinemia. Immunoelectrophoresis and immunofixation studies help identify the type of immunoglobulin, the clonality of the light chain, and the monoclonality and quantitation of the paraprotein. High-resolution electrophoresis and serum and urine immunofixation are recommended to help identify and characterize the monoclonal IgM paraprotein.

The light chain of the monoclonal protein is usually the kappa light chain. At times, patients with Waldenström macroglobulinemia may exhibit more than one M protein. Plasma viscosity must be measured. Results from characterization studies of urinary immunoglobulins indicate that light chains (Bence Jones protein), usually of the kappa type, are found in the urine. Urine collections should be concentrated.

Bence Jones proteinuria is observed in approximately 40% of patients and exceeds 1 g/d in approximately 3% of patients. Patients with findings of peripheral neuropathy should have nerve conduction studies and antimyelin associated glycoprotein serology

Prognosis

Current medical treatments result in survival of some longer than 10 years, in part this is because better diagnostic testing means early diagnosis and treatments. Older diagnosis and treatments resulted in published reports of median survival of approximately 5 years from time of diagnosis.[1] Currently, median survival is 6.5 years.[46] In rare instances, WM progresses to multiple myeloma.[47]

The International Prognostic Scoring System for Waldenström’s Macroglobulinemia (IPSSWM) is a predictive model to characterise long-term outcome.[48][49] According to the model, factors predicting survival (n.b. the study quoted conversely refers to them as "5 adverse covariates") are:

age >65 years;
hemoglobin ≤11.5 g/dL;
platelet count ≤100×109/L;
B2-microglobulin >3 mg/L;
serum monoclonal protein concentration >70 g/L.

The risk categories are:

Low: ≤1 adverse variable except age;
Intermediate: 2 adverse characteristics or age >65 years;
High: >2 adverse characteristics.

Five-year survival rates for these categories are 87%, 68% and 36% respectively.[50]

The IPSSWM has been shown to be reliable.[51] It is also applicable to patients on a Rituximab-based treatment regimen.[50] An additional predictive factor is elevated serum lactate dehydrogenase (LDH).[52]

Treatment

There is no single accepted treatment for WM.[53] There is marked variation in clinical outcome due to gaps in knowledge of the disease's molecular basis. Objective response rates are high (>80%) but complete response rates are low (0-15%).[5]

There are different treatment flowcharts: Treon[54] and mSMART.[55]

WM patients are at higher risk of developing second cancers than the general population, however it is not yet clear whether treatments are contributory.[56]

Watchful waiting

In the absence of symptoms, many clinicians will recommend simply monitoring the patient.[57] But on occasion the disease can be fatal, as it was to its best known sufferer, the former French president Georges Pompidou, who died in 1974. Indeed, in 1991, Waldenström himself raised the question of the need for effective therapy.[58]

First-line

Should treatment be started it should address both the paraprotein level and the lymphocytic B-cells.[59]

In 2002, a panel at the International Workshop on Waldenström Macroglobulinemia agreed on criteria for the initiation of therapy. They recommended starting therapy in patients with constitutional symptoms such as recurrent fever, night sweats, fatigue due to anemia, weight loss, progressive symptomatic lymphadenopathy or splenomegaly, and anemia due to marrow infiltration. Complications such as hyperviscosity syndrome, symptomatic sensorimotor peripheral neuropathy, systemic amyloidosis, renal insufficiency, or symptomatic cryoglobulinemia were also suggested as indications for therapy.[60]

Treatment includes the monoclonal antibody rituximab, sometimes in combination with chemotherapeutic drugs such as chlorambucil, cyclophosphamide, or vincristine or with thalidomide.[61] Corticosteroids, such as Prednisone, may also be used in combination. Plasmapheresis can be used to treat the hyperviscosity syndrome by removing the paraprotein from the blood, although it does not address the underlying disease.[62]

Recently, autologous bone marrow transplantation has been added to the available treatment options.[63][64][65][66]

Salvage therapy

When primary or secondary resistance invariably develops, salvage therapy is considered. Allogeneic stem cell transplantation can induce durable remissions for heavily pre-treated patients.[67]

Drug pipeline

As of October 2010, there have been a total of 44 clinical trials on Waldenstrom's macroglobulinemia, excluding transplantion treatments. Of these, 11 were performed on previously untreated patients, 14 in patients with relapsed or refractory Waldenstrom's.[68] A database of clinical trials investigating Waldenström's macroglobulinemia is maintained by the National Institutes of Health in the US.[69]

Patient stratification

Patients with polymorphic variants (alleles) FCGR3A-48 and -158 were associated with improved categorical responses to Rituximab-based treatments.[70]

See also

References

  1. ^ a b c d Cheson BD (2006). "Chronic Lymphoid Leukemias and Plasma Cell Disorders". In Dale DD, Federman DD. ACP Medicine. New York, NY: WebMD Professional Publishing. ISBN 0974832715. 
  2. ^ International Waldenstrom's Macroglobulinemia Foundation (IWMF). "Living with Waldenstrom's Macroglobulinemia."
  3. ^ Waldenstrom J (1944). "Incipient myelomatosis or "essential" hyperglobulinemia with fibrinognenopenia-a new syndrome?". Acta Med Scand 117 (3–4): 216–247. doi:10.1111/j.0954-6820.1944.tb03955.x. 
  4. ^ Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD (2000). "The World Health Organization classification of neoplastic diseases of the haematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997". Histopathology 36 (1): 69–86. doi:10.1046/j.1365-2559.2000.00895.x. PMID 10632755. 
  5. ^ a b Neparidze, N.; Dhodapkar, M. (2009). "Waldenstrom's macroglobulinemia: Recent advances in biology and therapy". Clinical advances in hematology & oncology : H&O 7 (10): 677–681, 687–681. PMID 20040909.  edit
  6. ^ Schop RF, Van Wier SA, Xu R et al. (2006). "6q deletion discriminates Waldenström macroglobulinemia from IgM monoclonal gammopathy of undetermined significance". Cancer Genet. Cytogenet. 169 (2): 150–3. doi:10.1016/j.cancergencyto.2006.04.009. PMID 16938573. 
  7. ^ Koshiol, J.; Gridley, G.; Engels, E.; McMaster, M.; Landgren, O. (2008). "Chronic immune stimulation and subsequent Waldenström macroglobulinemia". Archives of Internal Medicine 168 (17): 1903–1909. doi:10.1001/archinternmed.2008.4. PMC 2670401. PMID 18809818. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2670401.  edit
  8. ^ Kristinsson, S.; Björkholm, M.; Goldin, L.; McMaster, M.; Turesson, I.; Landgren, O. (2008). "Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia patients: a population-based study in Sweden". Blood 112 (8): 3052–3056. doi:10.1182/blood-2008-06-162768. PMC 2569164. PMID 18703425. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2569164.  edit
  9. ^ Royer, R.; Koshiol, J.; Giambarresi, T.; Vasquez, L.; Pfeiffer, R.; McMaster, M. (2010). "Differential characteristics of Waldenström macroglobulinemia according to patterns of familial aggregation". Blood 115 (22): 4464–4471. doi:10.1182/blood-2009-10-247973. PMC 2881498. PMID 20308603. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2881498.  edit
  10. ^ McMaster, M. (2003). "Familial Waldenstrom's macroglobulinemia". Seminars in oncology 30 (2): 146–152. doi:10.1053/sonc.2003.50063. PMID 12720125.  edit
  11. ^ McMaster, M.; Goldin, L.; Bai, Y.; Ter-Minassian, M.; Boehringer, S.; Giambarresi, T.; Vasquez, L.; Tucker, M. (2006). "Genomewide linkage screen for Waldenstrom macroglobulinemia susceptibility loci in high-risk families". American journal of human genetics 79 (4): 695–701. doi:10.1086/507687. PMC 1592553. PMID 16960805. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1592553.  edit
  12. ^ Sacco, A.; Issa, G. C.; Zhang, Y.; Liu, Y.; Maiso, P.; Ghobrial, I. M.; Roccaro, A. M. (2010). "Epigenetic modifications as key regulators of Waldenstrom's Macroglobulinemia biology". Journal of Hematology & Oncology 3: 38. doi:10.1186/1756-8722-3-38. PMC 2964547. PMID 20929526. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2964547.  edit
  13. ^ Braggio, E.; Keats, J. J.; Leleu, X.; Wier, S. V.; Jimenez-Zepeda, V. H.; Schop, R. F. J.; Chesi, M.; Barrett, M. et al. (2009). "High-Resolution Genomic Analysis in Waldenström's Macroglobulinemia Identifies Disease-Specific and Common Abnormalities with Marginal Zone Lymphomas". Clinical Lymphoma, Myeloma & Leukemia 9 (1): 39–42. doi:10.3816/CLM.2009.n.009. PMID 19362969.  edit
  14. ^ Azab, A. K.; Azab, F.; Quang, P.; Maiso, P.; Morgan, B.; Sacco, A.; Ngo, H. T.; Liu, Y. et al. (2011). "FGFR3 is overexpressed Waldenstrom macroglobulinemia and its inhibition by Dovitinib induces apoptosis, and overcomes stroma-induced proliferation". Clinical Cancer Research. doi:10.1158/1078-0432.CCR-10-2772. PMID 21521775.  edit
  15. ^ http://www.asco.org/ASCO/Abstracts+&+Virtual+Meeting/Abstracts?&vmview=abst_detail_view&confID=26&abstractID=4297
  16. ^ Leleu, X.; Jia, X.; Runnels, J.; Ngo, H.; Moreau, A.; Farag, M.; Spencer, J.; Pitsillides, C. et al. (2007). "The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia". Blood 110 (13): 4417–4426. doi:10.1182/blood-2007-05-092098. PMC 2234792. PMID 17761832. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2234792.  edit
  17. ^ Mensah-Osman, E.; Al-Katib, A.; Dandashi, M.; Mohammad, R. (2003). "XK469, a topo IIbeta inhibitor, induces apoptosis in Waldenstrom's macroglobulinemia through multiple pathways". International journal of oncology 23 (6): 1637–1644. PMID 14612935.  edit
  18. ^ a b Leleu, X.; Eeckhoute, J.; Jia, X.; Roccaro, A.; Moreau, A.; Farag, M.; Sacco, A.; Ngo, H. et al. (2008). "Targeting NF-kappaB in Waldenstrom macroglobulinemia". Blood 111 (10): 5068–5077. doi:10.1182/blood-2007-09-115170. PMC 2384134. PMID 18334673. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2384134.  edit
  19. ^ Braggio, E.; Keats, J.; Leleu, X.; Van Wier, S.; Jimenez-Zepeda, V.; Valdez, R.; Schop, R.; Price-Troska, T. et al. (2009). "Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom's macroglobulinemia". Cancer research 69 (8): 3579–3588. doi:10.1158/0008-5472.CAN-08-3701. PMC 2782932. PMID 19351844. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2782932.  edit
  20. ^ Gutiérrez, N.; Ocio, E.; De Las Rivas, J.; Maiso, P.; Delgado, M.; Fermiñán, E.; Arcos, M.; Sánchez, M. et al. (2007). "Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals". Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 21 (3): 541–549. doi:10.1038/sj.leu.2404520. PMID 17252022.  edit
  21. ^ Burwick, N.; Roccaro, A.; Leleu, X.; Ghobrial, I. (2008). "Targeted therapies in Waldenström macroglobulinemia". Current opinion in investigational drugs (London, England : 2000) 9 (6): 631–637. PMID 18516762.  edit
  22. ^ Chng, W.; Schop, R.; Price-Troska, T.; Ghobrial, I.; Kay, N.; Jelinek, D.; Gertz, M.; Dispenzieri, A. et al. (2006). "Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma". Blood 108 (8): 2755–2763. doi:10.1182/blood-2006-02-005488. PMC 1895596. PMID 16804116. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1895596.  edit
  23. ^ Nichols, G.; Stein, C. (2003). "Modulation of the activity of Bcl-2 in Waldenstrom's macroglobulinemia using antisense oligonucleotides". Seminars in oncology 30 (2): 297–299. doi:10.1053/sonc.2003.50045. PMID 12720156.  edit
  24. ^ Ngo, H.; Azab, A.; Farag, M.; Jia, X.; Melhem, M.; Runnels, J.; Roccaro, A.; Azab, F. et al. (2009). "Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom macroglobulinemia". Clinical cancer research : an official journal of the American Association for Cancer Research 15 (19): 6035–6041. doi:10.1158/1078-0432.CCR-09-0718. PMC 2990685. PMID 19755386. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2990685.  edit
  25. ^ Vacca, A.; Dammacco, F. (2009). "MicroRNAs to know in Waldenstrom macroglobulinemia". Blood 113 (18): 4133–4134. doi:10.1182/blood-2009-01-199828. PMID 19406998.  edit
  26. ^ Roccaro, A.; Sacco, A.; Chen, C.; Runnels, J.; Leleu, X.; Azab, F.; Azab, A.; Jia, X. et al. (2009). "MicroRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia". Blood 113 (18): 4391–4402. doi:10.1182/blood-2008-09-178228. PMC 2943754. PMID 19074725. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2943754.  edit
  27. ^ http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000764
  28. ^ http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000490
  29. ^ http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003134
  30. ^ http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000681
  31. ^ http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000481
  32. ^ http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003686
  33. ^ http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000466
  34. ^ Roccaro, A.; Sacco, A.; Jia, X.; Azab, A.; Maiso, P.; Ngo, H.; Azab, F.; Runnels, J. et al. (2010). "microRNA-dependent modulation of histone acetylation in Waldenström macroglobulinemia". Blood 116 (9): 1506–1514. doi:10.1182/blood-2010-01-265686. PMC 2938840. PMID 20519629. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2938840.  edit
  35. ^ Treon, S.; Kelliher, A.; Keele, B.; Frankel, S.; Emmanouilides, C.; Kimby, E.; Schlossman, R.; Mitsiades, N. et al. (2003). "Expression of serotherapy target antigens in Waldenstrom's macroglobulinemia: therapeutic applications and considerations". Seminars in oncology 30 (2): 248–252. doi:10.1053/sonc.2003.50047. PMID 12720146.  edit
  36. ^ Turgeon, Mary Louise (2005). Clinical hematology: theory and procedures. Hagerstown, MD: Lippincott Williams & Wilkins. p. 283. ISBN 0-7817-5007-5. "Frequency of lymphoid neoplasms. (Source: Modified from WHO Blue Book on Tumour of Hematopoietic and Lymphoid Tissues. 2001, p. 2001.)" 
  37. ^ a b Raje N, Hideshima T, Anderson KC (2003). "Plasma Cell Tumors". In Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS. Holland-Frei Cancer Medicine (6th ed.). New York, NY: B.C. Decker. ISBN 1550092138. 
  38. ^ Kyle RA (1998). "Chapter 94: Multiple Myeloma and the Dysproteinemias". In Stein JH. Internal Medicine (5th ed.). New York: C.V.Mosby. ISBN 0815186983. 
  39. ^ Owen RG, Barrans SL, Richards SJ, O'Connor SJ, Child JA, Parapia LA, Morgan GJ, Jack AS; Richards; O'Connor; Morgan; Owen; Parapia; Jack (2001). "Waldenstrom macroglobulinemia. Development of diagnostic criteria and identification of prognostic factors". Am J Clin Pathol 116 (3): 420–8. doi:10.1309/4LCN-JMPG-5U71-UWQB. PMID 11554171. 
  40. ^ San Miguel JF, Vidriales MB, Ocio E, Mateo G, Sanchez-Guijo F, Sanchez ML, Escribano L, Barez A, Moro MJ, Hernandez J, Aguilera C, Cuello R, Garcia-Frade J, Lopez R, Portero J, Orfao A (2003). "Immunophenotypic analysis of Waldenstrom's macroglobulinemia". Semin Oncol 30 (2): 187–95. doi:10.1053/sonc.2003.50074. PMID 12720134. 
  41. ^ Ghobrial IM, Witzig TE (2004). "Waldenstrom macroglobulinemia". Curr Treat Options Oncol 5 (3): 239–47. doi:10.1007/s11864-004-0015-5. PMC 3133652. PMID 15115652. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3133652. 
  42. ^ Dimopoulos MA, Kyle RA, Anagnostopoulos A, Treon SP (2005). "Diagnosis and management of Waldenstrom's macroglobulinemia". J Clin Oncol 23 (7): 1564–77. doi:10.1200/JCO.2005.03.144. PMID 15735132. 
  43. ^ Morbidity Mediated By The Effects Of IgM From Chapter 88 - Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma. Hoffman, Ronald (2009). Hematology : basic principles and practic. Philadelphia, PA: Churchill Livingstone/Elsevier. ISBN 978-0-443-06715-0. 
  44. ^ a b Ponce, D. Waldenstrom Hypergammaglobulinemia Workup. Medscape. Retrieved on: 2011-08-14.
  45. ^ a b National Cancer Institute. Waldenström Macroglobulinemia: Questions and Answers. Retrieved on: 2011-08-14.
  46. ^ http://emedicine.medscape.com/article/207097-overview
  47. ^ Johansson B, Waldenstrom J, Hasselblom S, Mitelman F (1995). "Waldenstrom's macroglobulinemia with the AML/MDS-associated t(1;3)(p36;q21)". Leukemia 9 (7): 1136–8. PMID 7630185. 
  48. ^ Morel P, Duhamel A, Gobbi P, Dimopoulos M, Dhodapkar M, McCoy J, et al. International Prognostic Scoring System for Waldenström’s Macroglobulinemia. XIth International Myeloma Workshop & IVth International Workshop on Waldenstrom's Macroglobulinemia 25 30 June 2007 Kos Island, Greece. Haematologica 2007;92(6 suppl 2):1-229.
  49. ^ Kastritis, E.; Kyrtsonis, M.; Hadjiharissi, E.; Symeonidis, A.; Michalis, E.; Repoussis, P.; Tsatalas, C.; Michael, M. et al. (2010). "Validation of the International Prognostic Scoring System (IPSS) for Waldenstrom's macroglobulinemia (WM) and the importance of serum lactate dehydrogenase (LDH)". Leukemia research 34 (10): 1340. doi:10.1016/j.leukres.2010.04.005. PMID 20447689.  edit
  50. ^ a b Dimopoulos, M.; Kastritis, E.; Delimpassi, S.; Zomas, A.; Kyrtsonis, M.; Zervas, K. (2008). "The International Prognostic Scoring System for Waldenstrom's macroglobulinemia is applicable in patients treated with rituximab-based regimens". Haematologica 93 (9): 1420–1422. doi:10.3324/haematol.12846. PMID 18641029.  edit
  51. ^ Hivert, B.; Tamburini, J.; Vekhoff, A.; Tournilhac, O.; Leblond, V.; Morel, P. (2011 Mar 10). "Prognostic value of the International Scoring System and response in patients with advanced Waldenström macroglobulinemia". Haematologica: epub ahead of print. doi:10.3324/haematol.2010.029140. PMID 21393333.  edit
  52. ^ Dhodapkar, M.; Hoering, A.; Gertz, M.; Rivkin, S.; Szymonifka, J.; Crowley, J.; Barlogie, B. (2009). "Long-term survival in Waldenstrom macroglobulinemia: 10-year follow-up of Southwest Oncology Group-directed intergroup trial S9003". Blood 113 (4): 793–796. doi:10.1182/blood-2008-07-172080. PMC 2630265. PMID 18931340. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2630265.  edit
  53. ^ Leleu, X.; Gay, J.; Roccaro, A.; Moreau, A.; Poulain, S.; Dulery, R.; Champs, B.; Robu, D. et al. (2009). "Update on therapeutic options in Waldenström macroglobulinemia". European journal of haematology 82 (1): 1–12. doi:10.1111/j.1600-0609.2008.01171.x. PMID 19087134.  edit
  54. ^ Treon, S. P. (2009). "How I treat Waldenström macroglobulinemia". Blood 114 (12): 2375–2385. doi:10.1182/blood-2009-05-174359. PMID 19617573.  edit
  55. ^ Ansell, S. M.; Kyle, R. A.; Reeder, C. B.; Fonseca, R.; Mikhael, J. R.; Morice, W. G.; Bergsagel, P. L.; Buadi, F. K. et al. (2010). "Diagnosis and Management of Waldenström Macroglobulinemia: Mayo Stratification of Macroglobulinemia and Risk-Adapted Therapy (mSMART) Guidelines". Mayo Clinic proceedings. Mayo Clinic 85 (9): 824–833. doi:10.4065/mcp.2010.0304. PMC 2931618. PMID 20702770. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2931618.  edit
  56. ^ Varettoni, M.; Tedeschi, A.; Arcaini, L.; Pascutto, C.; Vismara, E.; Orlandi, E.; Ricci, F.; Corso, A. et al. (2011). "Risk of second cancers in Waldenstrom macroglobulinemia". Annals of Oncology. doi:10.1093/annonc/mdr119. PMID 21525403.  edit
  57. ^ http://emedicine.medscape.com/article/207097-treatment
  58. ^ Waldenström J (1991). "To treat or not to treat, this is the real question". Leuk Res 15 (6): 407–8. doi:10.1016/0145-2126(91)90049-Y. PMID 1907339. 
  59. ^ Baehring, J.; Hochberg, E.; Raje, N.; Ulrickson, M.; Hochberg, F. (2008). "Neurological manifestations of Waldenström macroglobulinemia". Nature clinical practice. Neurology 4 (10): 547–556. doi:10.1038/ncpneuro0917. PMID 18813229.  edit
  60. ^ Kyle RA, Treon SP, Alexanian R, Barlogie B, Bjorkholm M, Dhodapkar M, Lister TA, Merlini G, Morel P, Stone M, Branagan AR, Leblond V (2003). "Prognostic markers and criteria to initiate therapy in Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia". Semin Oncol 30 (2): 116–20. doi:10.1053/sonc.2003.50038. PMID 12720119. 
  61. ^ Treon, S.; Soumerai, J.; Branagan, A.; Hunter, Z.; Patterson, C.; Ioakimidis, L.; Briccetti, F.; Pasmantier, M. et al. (2008). "Thalidomide and rituximab in Waldenstrom macroglobulinemia". Blood 112 (12): 4452–4457. doi:10.1182/blood-2008-04-150854. PMC 2597120. PMID 18713945. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2597120.  edit
  62. ^ Gertz MA (2005). "Waldenstrom macroglobulinemia: a review of therapy". Am J Hematol 79 (2): 147–57. doi:10.1002/ajh.20363. PMID 15929102. 
  63. ^ Yang L, Wen B, Li H, Yang M, Jin Y, Yang S, Tao J (1999). "Autologous peripheral blood stem cell transplantation for Waldenstrom's macroglobulinemia". Bone Marrow Transplant 24 (8): 929–30. doi:10.1038/sj.bmt.1701992. PMID 10516708. 
  64. ^ Martino R, Shah A, Romero P, Brunet S, Sierra J, Domingo-Albos A, Fruchtman S, Isola L (1999). "Allogeneic bone marrow transplantation for advanced Waldenstrom's macroglobulinemia". Bone Marrow Transplant 23 (7): 747–9. doi:10.1038/sj.bmt.1701633. PMID 10218857. 
  65. ^ Anagnostopoulos A, Dimopoulos MA, Aleman A, Weber D, Alexanian R, Champlin R, Giralt S (2001). "High-dose chemotherapy followed by stem cell transplantation in patients with resistant Waldenstrom's macroglobulinemia". Bone Marrow Transplant 27 (10): 1027–9. doi:10.1038/sj.bmt.1703041. PMID 11438816. 
  66. ^ Tournilhac O, Leblond V, Tabrizi R, Gressin R, Senecal D, Milpied N, Cazin B, Divine M, Dreyfus B, Cahn JY, Pignon B, Desablens B, Perrier JF, Bay JO, Travade P (2003). "Transplantation in Waldenstrom's macroglobulinemia--the French experience". Semin Oncol 30 (2): 291–6. doi:10.1053/sonc.2003.50048. PMID 12720155. 
  67. ^ Kyriakou, C.; Canals, C.; Cornelissen, J. J.; Socie, G.; Willemze, R.; Ifrah, N.; Greinix, H. T.; Blaise, D. et al. (2010). "Allogeneic Stem-Cell Transplantation in Patients with Waldenstrom Macroglobulinemia: Report from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation". Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28 (33): 4926–4934. doi:10.1200/JCO.2009.27.3607. PMID 20956626.  edit
  68. ^ Rourke, M.; Anderson, K. C.; Ghobrial, I. M. (2010). "Review of clinical trials conducted in Waldenstrom macroglobulinemia and recommendations for reporting clinical trial responses in these patients". Leukemia & Lymphoma 51 (10): 1779. doi:10.3109/10428194.2010.499977.  edit
  69. ^ http://clinicaltrials.gov/ct2/results?term=Waldenstrom
  70. ^ Treon, S. P.; Yang, G.; Hanzis, C.; Ioakimidis, L.; Verselis, S. J.; Fox, E. A.; Xu, L.; Hunter, Z. R. et al. (2011). "Attainment of complete/very good partial response following rituximab-based therapy is an important determinant to progression-free survival, and is impacted by polymorphisms in FCGR3A in Waldenstrom macroglobulinaemia". British Journal of Haematology: no–no. doi:10.1111/j.1365-2141.2011.08726.x.  edit

External links